February 19 – 22, 2014
Bethesda North Marriott Hotel
and Conference Center
Bethesda, Maryland

Course Information
Training in Neurotherapeutics Discovery and Development for Academic Scientists

Schedule

Directed by the University of California, Davis, Johns Hopkins Brain Science Institute, Harvard NeuroDiscovery Center, Northwestern University, in collaboration with the American Society for Experimental NeuroTherapeutics

Supported by NIH/NINDS Grant 1R25NS077582

Wednesday, February 19, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:45 am – 8:30 am</td>
<td>Continental Breakfast</td>
<td>Glen Foyer</td>
</tr>
<tr>
<td>8:30 am – 9:00 am</td>
<td>Overview: The Neurotherapeutics Discovery and Development Process</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course Directors</td>
<td>Forest Glen</td>
</tr>
<tr>
<td>9:00 am – 10:00 am</td>
<td>Lecture 1: Target and Pathway Interrogation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Douglas Auld, PhD, Novartis Institutes for Biomedical Research</td>
<td>Forest Glen</td>
</tr>
<tr>
<td>10:00 am – 10:10 am</td>
<td>Break</td>
<td>Glen Foyer</td>
</tr>
<tr>
<td>10:10 am – 11:10 am</td>
<td>Lecture 2: Biology Basics for Identifying Hits</td>
<td></td>
</tr>
<tr>
<td></td>
<td>William Janzen, BS, University of North Carolina, Chapel Hill</td>
<td>Forest Glen</td>
</tr>
<tr>
<td>11:10 am – 12:10 pm</td>
<td>Lecture 3: Moving from Hit to Lead to Clinical Candidate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>James Barrow, PhD, Johns Hopkins School of Medicine</td>
<td>Forest Glen</td>
</tr>
<tr>
<td>12:10 pm – 1:30 pm</td>
<td>Lunch (Students paired with mentors)</td>
<td>Glen Echo</td>
</tr>
<tr>
<td>1:30 pm – 2:30 pm</td>
<td>Lecture 4: Medicinal Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Craig Lindsley, PhD, Vanderbilt University Medical Center</td>
<td>Forest Glen</td>
</tr>
<tr>
<td>2:30 pm – 3:30 pm</td>
<td>Lecture 5: Alternative Approaches to Lead Generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sam Enna, PhD, University of Kansas</td>
<td>Forest Glen</td>
</tr>
<tr>
<td>3:30 pm – 3:45 pm</td>
<td>Break</td>
<td>Glen Foyer</td>
</tr>
<tr>
<td>3:45 pm – 5:30 pm</td>
<td>Engagement Exercise 1: Clarify vision statement and begin to develop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the components of mock translations grant application</td>
<td>Forest Glen</td>
</tr>
<tr>
<td>5:30 pm – 6:15 pm</td>
<td>Networking Reception</td>
<td>Glen Foyer</td>
</tr>
<tr>
<td>6:15 pm – 7:00 pm</td>
<td>Dinner</td>
<td>Glen Echo</td>
</tr>
<tr>
<td>7:00 pm – 8:15 pm</td>
<td>After Dinner Talk: Drug Discovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solomon Snyder, MD, DSc, DPhil, Johns Hopkins University</td>
<td>Forest Glen</td>
</tr>
</tbody>
</table>
Thursday, February 20, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:15 am – 8:00 am</td>
<td>Continental Breakfast</td>
<td>Glen Foyer</td>
</tr>
</tbody>
</table>
| 8:00 am – 9:00 am | **Lecture 6:** ADME
Kennan Marsh, PhD, AbbVie | Forest Glen |
| 9:00 am – 10:00 am| **Lecture 7:** Preclinical Proof-Concept / Target Engagement Studies
Kalpana Merchant, PhD, Eli Lilly and Company | Forest Glen |
| 10:00 am – 10:10 am| **Break** | Glen Foyer |
| 10:10 am – 11:10 am| **Lecture 8:** Toxicology
Adaline Smith, Ironwood Pharmaceuticals | Forest Glen |
| 11:10 am – 12:10 pm| **Lecture 9:** IND Enabling Studies and Preparation of the IND
William Bracken, PhD, DABT, AbbVie | Forest Glen |
| 12:10 pm – 1:30 pm| **Lunch**
(Responsible conduct of research exercise) | Glen Echo |
| 1:30 pm – 1:45 pm | **Break** | |
| 1:45 pm – 5:45 pm | **Engagement Exercise 2:** Round-Robin
Students interact individually with each subject expert | Forest Glen & Glen Echo |
| 5:45 pm – 6:30 pm | Networking Reception – ASENT Annual Meeting | Grand Ballroom C, Main Level |
| 6:30 pm – 7:30 pm | **ASENT Annual Meeting Dinner**
(Reserved for students to prepare mock translation grant applications; mentors available) | Grand Ballroom A / B, Main Level |
| 7:30 pm – 9:00 pm | **Reserved for students to prepare mock translation grant applications; mentors available** | Forest Glen and/or Glen Echo |

Friday, February 21, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:15 am – 8:00 am</td>
<td>Continental Breakfast</td>
<td>Glen Foyer</td>
</tr>
</tbody>
</table>
| 8:00 am – 9:00 am | **Lecture 10:** Case Studies
Course Directors | Forest Glen |
| 9:00 am – 10:00 am| **Lecture 11:** Formulation and Route of Administration
Janet Wolfe, PhD, Wolfe Laboratories, Inc. | Forest Glen |
| 10:00 am – 10:10 am| **Break** | Glen Foyer |
| 10:10 am – 11:10 am| **Lecture 12:** Rigor in Translational Drug Discovery and Development
Shai Silberberg, PhD, NIH/NINDS | Forest Glen |
| 11:10 am – 12:10 pm| **Lecture 13:** Intellectual Property
Kenneth Weber, PhD, Kilpatrick Townsend | Forest Glen |
| 12:10 pm – 2:00 pm| **Lunch** | Glen Echo |
| 2:15 pm – 6:00 pm | **Pipeline Session - ASENT 16th Annual Meeting**
Brief presentations on ongoing corporate and academic neurotherapeutic R&D projects | Grand Ballroom A / B, Main Level |
| 6:30 pm – 8:30 pm | **Restaurant Dinner – all invited**
Transportation leaves from Conference Center, Lower Level at 6:10 p.m. | Positano Ristorante |
Saturday, February 22, 2014

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:15 am – 8:00 am</td>
<td>Continental Breakfast</td>
<td>Glen Foyer</td>
</tr>
<tr>
<td>8:00 am – 9:00 am</td>
<td>Lecture 14: Funding Academic Drug Discovery Research</td>
<td>Forest Glen</td>
</tr>
<tr>
<td></td>
<td>Rebecca Farkas, PhD, NIH/NINDS</td>
<td></td>
</tr>
<tr>
<td>9:00 am – 10:15 am</td>
<td>Engagement Exercise 3: Student Presentations</td>
<td>Forest Glen, Seneca, Strathmore, Cabin John</td>
</tr>
<tr>
<td></td>
<td>– Description of mock translational grant application followed by critique</td>
<td></td>
</tr>
<tr>
<td>10:15 am – 10:30 am</td>
<td>Break</td>
<td>Glen Foyer</td>
</tr>
<tr>
<td>10:30 am – 11:45 am</td>
<td>Engagement Exercise 3: Continued</td>
<td>Forest Glen, Seneca, Strathmore, Cabin John</td>
</tr>
<tr>
<td>11:45 am – 12:00 pm</td>
<td>Lecture 15: Where Do We Go From Here?</td>
<td>Forest Glen</td>
</tr>
<tr>
<td></td>
<td>– Presentation of Plan for Continued Mentoring, Engagement and Course Evaluation over Two-Year Period</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course Directors</td>
<td></td>
</tr>
<tr>
<td>12:00 pm</td>
<td>Adjourn</td>
<td></td>
</tr>
</tbody>
</table>
Training in Neurotherapeutics Discovery and Development for Academic Scientists
February 19 – 22, 2014
Bethesda, Maryland
Program Director and Faculty List

Program Directors

Marcia Glicksman, PhD
Co-Director, Lab for Drug Discovery in Neurodegeneration
Harvard NeuroDiscovery Center
Assistant Professor, Department of Neurology
Brigham & Women’s Hospital
65 Landsdowne St.
Cambridge, MA 02319

Michael Rogawski, MD, PhD
Professor
Department of Neurology
University of California, Davis
4860 Y St., Suite 3700, Rm. 3715
Sacramento, CA 95817

Karl Scheidt, PhD
Associate Professor
Department of Chemistry
Northwestern University
2145 Sheridan Rd.
Evanston, IL 60208

Barbara Slusher, PhD, MAS
Director, NeuroTranslational Program
Johns Hopkins Brain Science Institute
855 N. Wolfe St., Suite 277
Baltimore, MD 21205
Faculty

Douglas Auld, PhD
Novartis Institutes for Biomedical Research
250 Massachusetts Ave.
Cambridge, MA 02139

James Barrow, PhD
Lieber Institute for Brain Development
Johns Hopkins School of Medicine
855 N. Wolfe St., Suite 273
Baltimore MD 21205

William Bracken, PhD, DABT
AbbVie
Global Pharmaceutical Regulatory Affairs
200 Abbott Park Rd., Dept PA70, Bldg. AP34-3
Abbott Park, IL 60054

Sam Enna, PhD
Department of Molecular and Integrative Physiology
University of Kansas Medical Center
3901 Rainbow Blvd., MS4016
Kansas City, KS 66160

Rebecca Farkas, PhD
Neuroscience Center
NIH/NINDS
6001 Executive Blvd., Rm. 2109
Bethesda, MD 20892

William Janzen, BS
Division of Medicinal Chemistry and Natural Products
University of North Carolina
Campus Box 7363
Chapel Hill, NC 27599

Craig Lindsley, PhD
Department of Pharmacology
Vanderbilt University Medical Center
1205 Light Hall
Nashville, TN 37232
Kennan Marsh, PhD
AbbVie
Experimental Sciences
100 Abbott Park Rd.
Abbott Park, IL 60045

Kalpana Merchant, PhD
Eli Lilly and Company
Indianapolis, IN

Shai Silberberg, PhD
NIH/NINDS
Neuroscience Center
6001 Executive Blvd., MSC 9521
Bethesda, MD 20892

Adaline Smith, PhD, DABT
Preclinical Development
Ironwood Pharmaceuticals
301 Binney St.
Cambridge, MA 02142

Kenneth Weber, PhD
Kilpatrick Townsend
Two Embarcadero Center, 8th Floor
San Francisco, CA 94111

Janet Wolfe, PhD
Wolfe Laboratories, Inc.
134 Coolidge Ave.
Watertown, MA 02472
Ryan Altman, PhD
Assistant Professor
Medicinal Chemistry Department
University of Kansas
4046A Malott Hall
1251 Wescoe Hall Dr.
Lawrence, KS 66045
Fluorinated Peptide Probes to Modulate Biophysical Properties of Neuropeptides

Noelle Anastasio, PhD
Postdoctoral Fellow
Center for Addiction Research
University of Texas Medical Branch
301 University Blvd., Route 0615
Galveston, TX 77555
Novel Serotonergic Strategy for the Treatment of Addiction

Matthew Banghart, PhD
Postdoctoral Fellow
Neurobiology Department
Harvard Medical School
220 Longwood Ave.
Boston, MA 02115
Biased Allosteric Modulators of the Kappa Opioid Receptor for Analgesia without Dysphoria

Melissa Barker-Haliski, PhD
Senior Research Analyst
Anticonvulsant Drug Development Program
University of Utah
417 Wakara Way, Suite 3211
Salt Lake City, UT 84108
Restoring Alzheimer's disease-induced Arc mRNA-dependent memory deficits with PatA
Bruno Benitez, MD
Research Instructor
Department of Medicine
Washington University in Saint Louis
6th Floor Southwest Tower, Room 644
660 S. Euclid Ave.
Saint Louis, MO 63110
Cell-Based High-Throughput Screening Assay for a NCL

Joshua Dunaief, MD, PhD
Associate Professor
Ophthalmology Department
University of Pennsylvania
Stellar Change Labs, Room 305
422 Curie Blvd.
Philadelphia, PA 19104
Iron chelation for neuroprotection of the retina and brain

David Graber, PhD
Research Associate/Instructor
Pathology Department
Geisel School of Medicine at Dartmouth
One Medical Center Dr.
Lebanon, NH 03756
Developing Therapeutic Inhibitors of Parenchymal Neuroinflammation with Phenotypic Screening System

Ye Han, PhD
Postdoctoral Fellow
Department of Neurology
Northwestern University
303 E. Chicago Ave.
Chicago, IL 60611
Drug development of a novel class of antidepressants

Rachel Hartley, PhD
Postdoctoral Fellow
Center for Addiction Research
University of Texas Medical Branch
301 University Blvd.
Galveston, TX 77555
Modulation of the Serotonin 2C Receptor for the Treatment of Cocaine Addiction
Adam Hartman, MD
Assistant Professor
Neurology Department
Johns Hopkins Medicine
Meyer 2-147
600 N. Wolfe St.
Baltimore, MD 21287
Metabolism-based therapy for seizures

Thomas Heinbockel, PhD
Associate Professor
Department of Anatomy
Howard College of Medicine
520 W. St., NW
Washington, DC 20059
Development of Novel Anxiolytic and Anticonvulsant Drugs

Yangzhong Huang, MD, PhD
Senior Research Associate
Department of Neurobiology
Duke University Medical Center
405 Bryan Research Dr.
Durham, NC 27710
Targeting TrkB Signaling for Prevention of Temporal Lobe Epilepsy

Dan Kaufmann, PhD
Postdoctoral Research Associate
Pharmacology and Toxicology Department
University of Utah
417 Wakara Way, Suite 3211
Salt Lake City, UT 84108
The Preclinical Evaluation Sec-Butyl Propylacetamide (SPD): A Novel Amide of Valproic Acid Analogue

Mei-Chuan Ko, PhD
Professor
Physiology and Pharmacology Department
Wake Forest University School of Medicine
Medical Center Blvd., 234 NRC
Winston-Salem, NC 27157
NOP-related Ligands as Analgesics
David Kokel, PhD
Assistant in Medicine
CVRC
Massachusetts General Hospital, Harvard Medical School
149 13th St., 4th Floor
Charlestown, MA 02124
Behavior based neuroactive drug discovery in the zebrafish

Jun-Xu Li, PhD
Assistant Professor
Pharmacology and Toxicology Department
University at Buffalo, SUNY
102 Farber Hall
3435 Main St.
Buffalo, NY 14214
Agmatine as a potential treatment for methamphetamine abuse

Patricia Maciel, PhD
Associate Professor
Life and Health Sciences Research Institute
University of Minho School of Health Sciences
Campus de Gualtar
Braga, 4710-057 Portugal
Development of therapeutic strategies for spinocerebellar ataxia type 1

Karla-Sue Marriott, PhD
Associate Professor
Chemistry & Forensic Science Department
Savannah State University
Drew Griffith 224
3219 College St.
Savannah, GA 31404
Synthesis of Selective Neurotherapeutic Ligands

Cecilia Marzabadi, PhD
Professor
Chemistry & Biochemistry Department
Seton Hall University
400 S. Orange Ave.
South Orange, NJ 07079
A New Class of Carbohydrate-based Anticonvulsants
Martin Muller, MD
Postdoctoral Associate
Department of Obstetrics, Gynecology & Reproductive Sciences
Yale University School of Medicine
PO Box 208063
333 Cedar St.
New Haven, CT 06520
Synthetic PreImplantation Factor`s Role in Treatment of Encephalopathy of Prematurity

Tristano Pancini, PhD
Postdoctoral Fellow
Vanderbilt Center for Neuroscience Drug Discovery
Vanderbilt University Medical Center
1205 Light Hall
Nashville, TX 37232
Characterization of M4-PAMs in Huntington's Disease

Irfan Qureshi, MD
Assistant Professor
Neurology & Medicine Department
Albert Einstein College of Medicine
1410 Pelham Parkway S., Suite 401
Bronx, NY 10461
Developing Compounds that Modulate REST for Treatment of Ischemic Stroke

Kristen Rahn, PhD
Postdoctoral Fellow
Department of Psychiatry
Johns Hopkins University School of Medicine
Pathology 627
600 N. Wolfe St.
Baltimore, MD 212187
Improving Treatment of Pediatric Major Depressive Disorder

Rana Rais, PhD
Postdoctoral Fellow
Brain Science Institute
Johns Hopkins University
855 N. Wolfe St.
Baltimore, MD 21205
Delivery of 2-phosphonomethyl pentanedioic acid (2-PMPA) to the brain via intranasal route
Shivraj Sohur, MD, PhD
Assistant in Neurology
Neurology Department
Massachusetts General Hospital
15 Parkman St., 735 WACC
Boston, MA 02114
Using Developmental Cues to Identify Small Molecule Therapeutics for Parkinson’s Disease

Naoki Suzuki, MD, PhD
Postdoctoral Fellow
Stem Cell & Regenerative Biology
Harvard University
Sherman Fairchild Biochemistry Building
7 Diversity Ave.
Cambridge, MA 02138
Drug screening for ALS using human ES/iPS cells

Mary Torregrossa, PhD
Assistant Professor
Department of Psychiatry
University of Pittsburgh
450 Technology Dr., Room 228
Pittsburgh, PA 15219
Relapse Prevention for Addictive Disorders

Paul Trippier, PhD
Assistant Professor
Department of Pharmaceutical Sciences
School of Pharmacy
Texas Tech University Health Sciences Center
1300 S. Coulter St.
Amarillo, TX 79106
Expanding the role of GSK3 inhibitors: Pediatric Neuromuscular Disorders
Kyle Wilcox, PhD
Postdoctoral Fellow
Neurobiology Department
Northwestern University
4-160 Hogan
2205 Tech Dr.
Evanston, IL 60208
HTS to Block ABO Binding to Nanodisc-Solubilized Synaptic Membrane Proteins

Ashkann Younai, PhD
Postdoctoral Researcher
Department of Chemistry
Northwestern University
2145 Sheridan Rd.
Evanston, IL 60208
Applying N-Heterocyclic Carbenes Towards the Synthesis of New Antipsychotic Drugs
Lecture 1: Target and Pathway Interrogation

Douglas Auld, PhD, Novartis Institutes for Biomedical Research

This talk will cover key concepts and methods when attempting to study a target or pathway using low-molecular compound screening approaches. The talk will provide an overview of integrated lead finding, reverse and forward chemical genomic approaches, and definitions with a few examples of the types of assays used to develop a critical path in drug discovery. Complexities underlying cell-based (phenotypic) assays will be exemplified and strategies to generate hypothesis both pre- and post-HTS using annotated compound collections will also be covered.
Biology Basics
Abstract: The transition from a target to a hit compound can take many paths. This lecture will discuss basic principles of drug and probe discovery and the techniques and terminology used in this segment of discovery. Because alternate approaches are covered in another lecture, we will focus on high throughput screening (HTS) approaches. HTS is capable of generating massive quantities of data but without a good understanding of assay cascade and mechanisms for minimizing and recognizing false positives, exciting compounds may be lost in the noise.

The assay is the most basic part of any hit discovery project. Whether you are applying HTS, computational analysis or co-factor analogs, you cannot measure differences without a valid cascade of assays to support hit progression. Assay development principles will be discussed, including detection technologies and logistics as well as the importance of assay validation.
Hit to Lead to Candidate

Once a drug target has been identified and assays developed, *hits* (compounds with confirmed activity at the target) are obtained from many sources – often from high-throughput screening. Drug discovery scientists investigate the hits by obtaining or synthesizing related compounds and evaluating them in a battery of more and more stringent assays and filters. If potency, selectivity, and in vivo activity can be improved, a series of structurally related compounds (*leads*) emerge. Optimization usually requires iterative synthesis and testing of hundreds to thousands of molecules before a single molecule with all the desired properties is identified as a *candidate* for extensive safety testing to support human clinical trials. To facilitate the process of moving from hit to lead to candidate, a research operating plan containing relevant assays is developed. A research operating plan is like a funnel that uses high-throughput assays at the beginning to quickly winnow out compounds with poor potential for success. As compounds pass through these initial filters, more involved (expense and time) assays are used to further highlight strengths and weaknesses of compounds. Key aspects of the plan usually include a high-throughput biochemical assay and a cell-based functional assay that confirms the initial result in a more relevant cellular setting. Selectivity is also evaluated versus related targets and common “anti-targets” predictive of the overall safety of a compound. Pharmacokinetics and brain penetration potential are first explored using simplified in vitro assays such as microsome stability and transporter propensity. Select compounds are then checked for appropriate free exposure in the blood and brain before evaluating in biomarker and efficacy studies. When a compound is prepared and evaluated that pass all the criteria in the research operating plan, it is nominated as a candidate for extensive safety testing prior to evaluation in humans.
This lecture will provide an overview of medicinal chemistry and the role of the CNS medicinal chemist. After the overview, we will dive into a real world case study, GlyT1 inhibitors, and walk through all of the issues and challenges in developing a nascent target from HTS to clinical candidate, as well as development of a biomarker strategy. Finally, we will discuss GPCRs, orthosteric vs. allosteric mechanisms to modulate their activity and issues/caveats in CNS drug discovery pertaining to receptor reserve, shallow SAR, ‘molecular switches’ and biomarkers.
Historically, drug discovery was chiefly an empirical enterprise, with the shift to a more hypothesis-driven approach occurring in the 20th century. Whereas originally drug discovery was focused primarily on identifying therapeutically useful agents prior to defining their mechanisms of action, it is now more common to develop a target-selective compound before assessing its potential clinical utility. Too often this yields ligands that are useful as research tools, but worthless as therapeutics. Although the emphasis on target identification, or "targeophilia", has yielded novel pharmaceuticals, it does not appear to have facilitated the drug discovery process overall, especially for compounds to treat central nervous system (CNS) disorders. In part, this is because the targephilic approach requires a keen understanding of the relationship between the target and organ system physiology, and the availability of in vivo and in vitro test systems that reliably predict human responses. The fact that the majority of CNS drugs have been identified empirically indicates the lack of knowledge about basic neurobiological processes and human behavior make drug discovery in this area less amenable to a target-based approach than for other types of therapeutics. Improving the success rate in CNS drug discovery requires a more pharmacometric-based strategy, with an emphasis on defining basic CNS function in intact animals and a more systematic in vivo behavioral analysis of novel chemical structures. Efforts should also be directed toward defining the sites of action of existing CNS drugs to aid in the design of second-generation agents and toward examining the CNS responses to drugs approved for other uses. Such a program requires a greater balance between, and integration of, pharmacometric and molecular techniques to maximize the contributions of both science and serendipity in drug discovery.
Lecture 6: ADME: Absorption + Distribution + Metabolism + Excretion = Pharmacokinetics

Kennan Marsh, PhD
AbbVie Inc.

Absorption, Distribution, Metabolism, Excretion (ADME) are the terms used to describe the behavior of a drug following administration to animals or man. These terms also highlight the barriers in the development of an efficacious drug. Together, the terms are integrated into the pharmacokinetics of a compound - the quantitation of the time course of a drug and its metabolites in the body. Using preclinical examples, this presentation will introduce the basic terms and concepts in pharmacokinetics, with a focus on understanding the integration and interdependencies of ADME characteristics. Pharmacokinetic considerations for compound screening and compound development activities will be discussed. The expectations from regulatory authorities (e.g. FDA, EMA) as related to ADME/PK characterization of new compounds for IND/CTA as well as NDA/MAA filings will be outlined.
It’s all about dose......Nonclinical Safety Assessment During Drug Development
Adaline C. Smith, PhD, DABT Senior Director, Toxicology, Ironwood Pharmaceuticals, Cambridge, MA

Nonclinical toxicology studies are critical during drug development because there is a scientific need and regulatory requirement to collect information which defines the toxicity profile and provides an evaluation of the relationship of dose and exposure to toxicity/safety of an investigational therapeutic in order to inform human risk before and during clinical development. Safety concerns (based on observed animal and human toxicities) are responsible for the majority of drug terminations and the evaluation of the toxicities in animals is useful in identifying and characterizing potential human toxicities. Toxicity assessments are initiated during drug discovery to identify key risks and provide an estimate of the nonclinical safety window before selection of a candidate molecule. Investigational New Drug (IND)-enabling toxicology studies are conducted after the selection of a candidate molecule under Good Laboratory Practice (GLP) regulations to inform the first-in-human and early clinical studies. Depending on the clinical development plan for a specific therapeutic and indication, additional toxicology studies are conducted to support the initiation of larger clinical trials and chronic dose administration as well as to evaluate risks related to potential reproductive and developmental toxicity and carcinogenicity. All the data from nonclinical toxicology studies that is collected before and during clinical development support a New Drug Application (NDA) submitted to regulatory authorities for the marketing of a new therapeutic. Nonclinical safety assessment is an integral component of drug development which provides information that defines potential human risks to inform safe clinical development and marketing of drugs.
Lecture 9: IND Enabling Studies and Preparation of the IND

William Bracken, PhD
AbbVie

Preparing for submission of an IND to initiate human clinical trials involves three parallel streams of activities that interweave at various points during the development process: Efficacy, Safety and Quality. The objective of the submission is multifold: 1) demonstrate a plausible hypothesis supporting the proposed mechanism of pharmacological action, 2) demonstrate an understanding of safety concerns through the conduct of nonclinical studies that identify the adverse effect profile using both in vitro and in vivo study designs, establish a link between pharmacodynamics actions and drug concentrations (e.g., plasma drug concentrations) and adverse toxicologic effects and drug concentrations to understand the dose-related nature of the findings, and 3) demonstrate that a tightly controlled process for the drug form to be tested in humans has been developed to assure that a patient receives the same drug performance and attributes from batch to batch. Scientific evidence verifying each stream is developed and presented by a Sponsor to FDA or other regulatory agencies to support initiation of human clinical trials.

Ongoing efforts to globally harmonize the drug development processes has resulted in availability of the Common Technical Document (CTD) to support submission to regulatory agencies for both initiation of human clinical studies as well as the drug application supporting product registration. The presentation of information should be unambiguous and transparent, in order to facilitate review of the basic data and to help the reviewer become quickly oriented to the application contents. The CTD is organized in five modules: 1) Administrative Information specific to each region, 2) Summary documents, with specific sections for nonclinical, clinical and quality (manufacturing) components that highlight the main attributes of the investigational drug, 3) Quality, a section containing detailed information on drug substance and drug product manufacture as well as supporting data for process controls, 4) Nonclinical Study Reports contains individual reports for pharmacology, pharmacokinetic and toxicology studies, and 5) Clinical Study Reports contains reports and documentation of the human clinical trials. One can easily understand the value of a consistent approach to document preparation for an agency reviewer who is asked to review applications from multiple sponsors and multiple countries.
Lecture 11: Formulation and Route of Administration

Janet Wolfe, PhD
Wolfe Laboratories, Inc.

The formulation of an experimental therapeutics is an essential part of effective drug discovery and development. This module will give an overview of the benefits and limitations of various routes of administration and will then address formulation strategies that enable the drug discovery and early development process. Particular focus will be paid to methods to solubilize small molecules to maximize exposure via various routes of administration, thus allowing informed decision making on efficacy and safety.

Lecture 12: Rigor in Translational Drug Discovery and Development

Shai Silberberg, PhD
NIH/NINDS

The quality of research depends on the rigor with which researchers conduct studies and control for potential biases. Recent publications and meetings have focused on the observation that published research results are often not reproducible. Although there are many possible causes for this problem, poor experimental design and inadequate reporting of research methodologies appear to be significant contributing factors. Evidence for this deduction will be presented, as well as actions taken by NIH and publishers to address the issues.
Lecture 14

Funding Academic Drug Discovery

Rebecca Farkas, PhD

The NIH supports drug discovery and development for nervous system disorders through a variety of programs. Some provide funding through grants or cooperative agreements to support specific stages of research and development, for particular disease areas. Others offer in-kind support from NIH drug discovery and development contracts or through collaborations with NIH-funded research centers or intramural labs. Examples of current programs will be presented, along with advice based on program directors’ observations from study section reviews of hundreds of translational applications. Potential applicants are encouraged to contact program directors to discuss the best funding mechanism for their needs and strategies for developing a strong application.